Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotheranostics ; 8(2): 239-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444742

RESUMO

Cancer metastasis plays a major role in failure of therapeutic avenues against cancer. Owing to metastasis, nearly 70-80% of stage IV breast cancer patients lose their lives. Nanodrug delivery systems are playing a critical role in the therapy of metastatic cancer in the recent times. This paper reports the enhanced permeation and retention (EPR) based targeting of metastatic breast cancer using a novel nano lipo-polymeric system (PIR-Au NPs). The PIR-Au NPs demonstrated an increase in fluorescence by virtue of surface coating with gold, owing to the metal enhanced fluorescence phenomenon as reported in our earlier reports. Enhanced fluorescence of PIR-Au NPs was observed in murine mammary carcinoma cell line (4T1), as compared to free IR780 or IR780 loaded nanosystems (P-IR NPs), when incubated for same time at same concentrations, indicating its potential application for imaging and an enhanced bioavailability of IR780. Significant cell death was noted with photothermal mediated cytotoxicity in-vitro against breast cancer cells (MCF-7 and 4T1). An enhanced fluorescence was observed in the zebra fish embryos incubated with PIR-Au NPs. The enhanced permeation and retention (EPR) effect was seen with PIR-Au NPs in-vivo. A strong fluorescent signal was recorded in mice injected with PIR-Au NPs. The tumor tissue collected after 72 h, clearly showed a greater fluorescence as compared to other groups, indicating the plasmon enhanced fluorescence. We also demonstrated the EPR-based targeting of the PIR-Au NPs in-vivo by means of photothermal heat. This lipo-polymeric hybrid nanosystem could therefore be successfully applied for image-guided, passive-targeting to achieve maximum therapeutic benefits.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Fluorescência , Ouro , Morte Celular , Temperatura Alta , Polímeros
2.
ACS Macro Lett ; 12(2): 255-262, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723076

RESUMO

With the advent of nucleosome/nucleotide intercalating drugs, DNA-based nanocarriers have recently gained impetus. However, most of the newly proposed DNA nanosystems are rather complex, thereby having low scalability and translatability. In this study, we propose a simple DNA nanomatrix core encapsulated within a chitosan shell, which is expected to enhance the encapsulation efficiency of intercalating drugs. This has been demonstrated using proflavine hemisulfate (PfHS), a model intercalating agent that shows improved ROS generation, among other anticancerous properties. The release of the drug from the nanomatrix is triggered by providing a heat trigger using IR-792 perchlorate, a known NIR photothermal sensitizer.


Assuntos
Doxorrubicina , Terapia Fototérmica , Sistemas de Liberação de Medicamentos , Tecnologia , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...